ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a) gene mutations alter the base sequence on DNA thus altering the genetic code;	
chromosomal mutations alter the chromosome structure thus altering the sequences of genes on the chromosome;	
chromosome mutations may also alter the chromosome number of the individual;	3
(b) substitution/deletion/addition/inversion/translocation;;(any two)	
sickle cell anaemia/albinoism/melanism/any other valid example;;(any two)	4
(c) when an individual receives three copies of chromosome 21 instead of two;	
reference to non disjunction/translocation;	
reference to learning difficulties/thick set bodies/thick necks/infertility/any other correct symptom;	max 2
(d) one gene mutation will produce a new character which will thus be a discontinuous variant;	
thousands of similar gene mutations will form a wide range of slightly different characters which will give continuou	18
variation;	2
ТО	TAL 11

(a) (i)	increase in chromosome number;	2
	entier of individual enromosomes of of complete sets,	4
(ii)	allopolyploidy;	1
(iii)	the genomes of one set of (the species') chromosomes;	1
(iv)	where the chromosomes fail to separate during anaphase; due to failure of the spindle to contract;	
	thus new nuclear membrane forms round both lots of chromosomes together;	max 2
(b) the they due	individuals arising from polyploidy can all interbreed to form fertile offspring (and thus are a species); y cannot breed back to the parental stock to produce fertile offspring and are thus separate species to the parents; to the impossibility of chromosomes to pair/form bivalents in meiosis;	3
(c) (i)	they possess the genes of both parental species including the genes that confer the best/strongest characters; thus have a 'double dose' of valuable genes; giving them greater survival potential;	3
(ii)	increased yield; easier to thresh/extract grain/ better flour/higher disease resistance/quicker maturing/better nutritive value;	2
	TOT	TAL 14

ANSWERS & MARK SCHEMES

QUESTIONSHEET 3

(a) mosquitoes were exposed to DDT to eradicate them as malarial vectors;	
alleles mutated in a few mosquitoes and gave them DDT resistance;	
these resistant forms survived and reproduced to form more resistant mosquitoes;	
because non-resistant forms had been wiped out there was no competition;	
and resistant forms could flourish/less selection pressure on resistant forms;	max 4
(b) over use of antibiotics by medical profession/in animal foodstuffs exposed many bacteria to antibiotics; mutant alleles appeared which gave certain strains of bacteria antibiotic resistance; the mutant alleles were in the plasmid DNA; when bacteria die the plasmids are released into the substrate:	
and may become incorporated into other species of bacteria (thus giving them antibiotic resistance);	max 4
(c) due to the formation of a restitution nucleus/equivalent, that doubles the chromosome number;	
thus it can now form bivalents in meiosis and so produce gametes;	2
	TOTAL 10

 (a) radiation that is naturally present in the environment; comes from cosmic rays hitting Earth/ from radioactive elements (such as uranium/thorium/radon) in the Earth's rocks /from natural radioactive carbon and potassium isotopes in biological matter; 	2
(b) alpha = helium nuclei; beta = electrons/positrons; gamma = electromagnetic energy; beta is least likely since its particles are light and have little penetrating power;	4
(c) mustard gas; 5-bromouracil/dioxin/any other valid example;	2
(d) (i) there is a linear relationship between the dose of radiation over a total life span and the amount of mutation /the higher the dose the more mutation and time between doses does not limit the mutation;	1
(ii) $X = \frac{12.5 \times 2}{5}; = 5\%;$	2
(e) (i) Any three of: substitution/addition/deletion/inversion/translocation;	1
(ii) Any three of: deletion/addition/inversion/translocation;	1
TOTAL	13

ANSWERS & MARK SCHEMES

QUESTIONSHEET 5

(a) (i)	cells (in culture) treated with colchicine/drug; which holds chromosomes in metaphase of mitosis/in their most visible state; cells smeared on slide, (fixed) and stained to show chromosomes; chromosomes in many nuclei photographed through microscope; chromosomes cut out singly and matched into pairs; according to length/shape/position of centromere/staining pattern;	max 4
(ii)	amniotic fluid sample taken from pregnant mother; this contains fetal cells/cells shed from the baby; these can be gently centrifuged to concentrate them; then placed in tissue culture;	

allowed to grow and divide (mitotically) for several days;

(b) (i) yes;

46 plus 1 extra chromosome/22 pairs plus a group of 3 identical chromosomes;

trisomy 21/Downs syndrome;

ref to non disjunction;

chromosomes 21 failed to separate in anaphase and both went to same pole/egg nucleus; thus when egg was fertilised the zygote contained three of chromosome 21;

(iii) female;

if it was male a different shaped Y chromosome would be visible;

2

max 4

max 3

2

TOTAL 15

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

(a) (i)	DNA triplet would become CAT;	
	this would form GUA by transcription to the mRNA;	
	GUA codes for valine;	
	thus sixth amino acid in chain/penultimate amino acid is changed from glutamic acid to valine;	max 3
(ii)	will affect/alter the cross-bonding in the globin chain/polypeptide;	
	which will alter the 3-D shape/conformation/tertiary structure of the molecule;	2
(iii)	substitution;	
. ,		1
(b) mala	arial parasite develops inside red cells of humans;	
canı	not survive on haemoglobin S as substrate/cannot survive in reduced potassium ion environments;	
thus	s sickle cell sufferers are resistant to malarial infection but usually die from sickle cell anaemia at an early age;	
sick	le cell trait heterozygotes are resistant to malarial infection and do not die from sickle cell anaemia;	
thus	reproduce normally raising incidence of mutant gene in the population of the malarial zone;	
(pro	bably) have a greater reproductive capacity than malarial sufferers (within the population);	max 4
	то	TAL 10

(a) (i)	(three) nucleotides could be omitted during replication of DNA (in meiosis/gamete formation); thus mRNA does not include the omitted nucleotides (during transcription); thus an amino acid (actually phenylalanine) will be omitted from the polypeptide chain; during translation; thus CFTR protein will not work/work properly/be ineffective;	4
(ii)	substitution; insertion/addition; translocation;	max 2
(b) (i)	(use suitable symbols, eg C for normal allele, c for cystic fibrosis allele)	
	$\begin{array}{ccc} P & Cc & x & Cc;\\ \text{gametes } & \bigcirc & & & & \\ \end{array}$	
	$F_{1} \begin{array}{ccc} CC & Cc & cc ; \\ & \bigstar & \bigstar & \bigstar \\ & & & & & \bigstar \\ & & & & &$	5
(ii)	CF males are sterile so their genes can be disregarded; 4% of the population are carriers; thus chances of carriers crossing = $.04 \times .04 = .0016$ or 0.16%; (allow other ways of showing figures) probability of carrier cross producing a CF child is 1 in 4; thus expected incidence will be $0.16 = 0.04\%$; 4	
	(if say $\underline{100} = 0.04\%$ allow 1 mark only, unless explained) 2500	max 4
(iii)	because new mutations (of the same type) are constantly happening;	1
(c) remo diet gene	ove mucus by physiotherapy/thoracic massage/aspiration; control (to counteract pancreatic misfunction); e therapy;	max 2

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

(a) (i)	ref to restitution nucleus;	
	failure of chromosomes to separate during anaphase;	
	most likely in mitosis in apical meristem;	
	thus this part/sector of the plant would be tetraploid and would produce diploid gametes;	
	since inbreeding these would produce tetraploid seed/offspring;	
	which would breed on to produce more tetraploids;	max 4
(ii)	gametes of Coffea arabica will contain 22 chromosomes;	
	gametes of other species/ancestral form will contain 11 chromosomes;	
	thus accurate bivalent formation in meiosis cannot occur;	
	so even if hybrid grows it will not be able to produce viable gametes;	max 3
(b) gene	es from other stock will not be incorporated and so it becomes genetically stable;	
all p	lants will have basically the same genotype;	
good	d features/high yield/disease resistance/flavour/quick growth/any valid example, will be perpetuated/	
not o	diluted by intrusion of other genes;	
poly	ploidy will be maintained;	
poly	ploids produce larger beans;	max 4
		TOTAL 11

 (a) pollen of the one species fertilises the ovule/embryo sac of the other species; seeds produced; 	
these germinate/grow to produce offspring with one set of chromosomes from each of the parent species; ref to F, hybrid;	
ref to allopolyploidy;	max 3
(b) no meiosis can occur;	
since (non-matching) chromosomes of orange and pummelo will not pair (in synapsis);	
thus haploid pollen/egg nuclei cannot be produced;	
seed develops purely by mitosis;	max 2
(c) no variation due to meiosis/random assortment/chiasmata;	
no variation due to outbreeding/fertilisation;	
variation can only occur by mutation;	max 2
(d) gene mutation/point mutation (of a gene); (reject 'polyploidy)	
ref to substitution/deletion/addition/inversion/translocation (of genes);	2
	TOTAL 9

ANSWERS & MARK SCHEMES

QUESTIONSHEET 10

ax 3
ax 2
21;
ax 3
L 8

QUESTIONSHEET 11

(a) (i)	incidence remains very low/less than 2 per thousand/does not increase up the the age of 30 (years); steady increase/increases to 4 per thousand/incidence doubles between 30 and 35 (years); steeper increase/increases to 18 per thousand from 35 to 45 (years); 3
(ii)	meiosis becomes less efficient as mother ages/random assortment/segregation to poles less efficient; older parents have undergone longer exposure to possible mutagens and so tend to have higher mutation rates; max 1
(iii)	non-disjunction; failure of sets of chromosomes to segregate accurately (in anaphase of meiosis); for instance two of chromosome 21/18/13 may go to one pole and none to the other pole; (thus) egg may contain two copies of the chromosome; (thus) after fertilisation the zygote will have three copies of the chromosome; max 3
(b) ref a colle centre treat make	mniocentesis; ect amniotic fluid (which contains fetal cells); rifuge to collect fetal cells and then grow them in tissue culture; with colchicine/drug to hold chromosomes in metaphase/visible/spread out state; e smears and stain (with chromosome stain);
phot	ograph chromosomes of many nuclei, cut out and pair/ref karyotyping; max 3
	TOTAL 10

(a) (i)	inversion;	1
(ii)		
		1
(b) (i)	cross bandings show positions of stained/similar DNA/DNA bands marked by gene probes; cross bandings match very closely (in non-mutated part of chromosomes); even match in mutated region taking into account the inversion; since they have similar staining/marked DNA/similar DNA distribution they are probably closely related;	max 3
(ii)	after divergence from common stock/common ancestry;	1